دانلود مقاله ISI انگلیسی شماره 101297
ترجمه فارسی عنوان مقاله

قدرت پیش بینی خواص محلی شبکه های مالی

عنوان انگلیسی
The predictive power of local properties of financial networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
101297 2017 25 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 466, 15 January 2017, Pages 79-90

ترجمه کلمات کلیدی
شبکه های، پیش بینی، پیش بینی ها،
کلمات کلیدی انگلیسی
Networks; Prediction; Forecasts;
پیش نمایش مقاله
پیش نمایش مقاله  قدرت پیش بینی خواص محلی شبکه های مالی

چکیده انگلیسی

The literature on analyzing the dynamics of financial networks has focused so far on the predictive power of global measures of networks like entropy or index cohesive force. In this paper, I show that the local network properties have similar predictive power. I focus on key network measures like average path length, average degree or cluster coefficient, and also consider the diameter and the s-metric. Using Granger causality tests, I show that some of these measures have statistically significant prediction power with respect to the dynamics of aggregate stock market. Average path length is most robust relative to the frequency of data used or specification (index or growth rate). Most measures are found to have predictive power only for monthly frequency. Further evidences that support this view are provided through a simple regression model.