دانلود مقاله ISI انگلیسی شماره 109503
ترجمه فارسی عنوان مقاله

روش تجزیه و تحلیل برای اندازه گیری و اندازه گیری برش در صنایع کاغذ

عنوان انگلیسی
Decomposition methods for the lot-sizing and cutting-stock problems in paper industries
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
109503 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Mathematical Modelling, Volume 48, August 2017, Pages 250-268

ترجمه کلمات کلیدی
مشکل برش مشکل بزرگنمایی تجزیه دانتزیگ وولف، روش تولید ستون، جستجوی محله بزرگ سازگار،
کلمات کلیدی انگلیسی
Cutting problem; Lot-sizing problem; Dantzig–Wolfe decomposition; Column generation method; Adaptive large neighborhood search;
پیش نمایش مقاله
پیش نمایش مقاله  روش تجزیه و تحلیل برای اندازه گیری و اندازه گیری برش در صنایع کاغذ

چکیده انگلیسی

We investigate the one-dimensional cutting-stock problem integrated with the lot-sizing problem in the context of paper industries. The production process in paper mill industries consists of producing raw materials characterized by rolls of paper and cutting them into smaller rolls according to customer requirements. Typically, both problems are dealt with in sequence, but if the decisions concerning the cutting patterns and the production of rolls are made together, it can result in better resource management. We investigate Dantzig–Wolfe decompositions and develop column generation techniques to obtain upper and lower bounds for the integrated problem. First, we analyze the classical column generation method for the cutting-stock problem embedded in the integrated problem. Second, we propose the machine decomposition that is compared with the classical period decomposition for the lot-sizing problem. The machine decomposition model and the period decomposition model provide the same lower bound, which is recognized as being better than the linear relaxation of the classical lot-sizing model. To obtain feasible solutions, a rounding heuristic is applied after the column generation method. In addition, we propose a method that combines an adaptive large neighborhood search and column generation method, which is performed on the machine decomposition model. We carried out computational experiments on instances from the literature and on instances adapted from real-world data. The rounding heuristic applied to the first column generation method and the adaptive large neighborhood search combined with the column generation method are efficient and competitive.