دانلود مقاله ISI انگلیسی شماره 41516
ترجمه فارسی عنوان مقاله

یک الگوریتم یادگیری تکراری برای شبکه های عصبی پیشخور با وزن های تصادفی

عنوان انگلیسی
An iterative learning algorithm for feedforward neural networks with random weights
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
41516 2016 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 328, 20 January 2016, Pages 546–557

ترجمه کلمات کلیدی
شبکه های عصبی با وزن های تصادفی - الگوریتم یادگیری - ثبات - همگرایی
کلمات کلیدی انگلیسی
Neural networks with random weights; Learning algorithm; Stability; Convergence
پیش نمایش مقاله
پیش نمایش مقاله  یک الگوریتم یادگیری تکراری برای شبکه های عصبی پیشخور با وزن های تصادفی

چکیده انگلیسی

Feedforward neural networks with random weights (FNNRWs), as random basis function approximators, have received considerable attention due to their potential applications in dealing with large scale datasets. Special characteristics of such a learner model come from weights specification, that is, the input weights and biases are randomly assigned and the output weights can be analytically evaluated by a Moore–Penrose generalized inverse of the hidden output matrix. When the size of data samples becomes very large, such a learning scheme is infeasible for problem solving. This paper aims to develop an iterative solution for training FNNRWs with large scale datasets, where a regularization model is employed to potentially produce a learner model with improved generalization capability. Theoretical results on the convergence and stability of the proposed learning algorithm are established. Experiments on some UCI benchmark datasets and a face recognition dataset are carried out, and the results and comparisons indicate the applicability and effectiveness of our proposed learning algorithm for dealing with large scale datasets.