دانلود مقاله ISI انگلیسی شماره 101396
ترجمه فارسی عنوان مقاله

پیش بینی سری زمانی مالی با استفاده از یک شبکه عصبی مکرر پیچیدگی و روش یادگیری تکاملی

عنوان انگلیسی
Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
101396 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of King Saud University - Computer and Information Sciences, Volume 29, Issue 4, October 2017, Pages 536-552

پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی سری زمانی مالی با استفاده از یک شبکه عصبی مکرر پیچیدگی و روش یادگیری تکاملی

چکیده انگلیسی

The paper presents a low complexity recurrent Functional Link Artificial Neural Network for predicting the financial time series data like the stock market indices over a time frame varying from 1 day ahead to 1 month ahead. Although different types of basis functions have been used for low complexity neural networks earlier for stock market prediction, a comparative study is needed to choose the optimal combinations of these for a reasonably accurate forecast. Further several evolutionary learning methods like the Particle Swarm Optimization (PSO) and modified version of its new variant (HMRPSO), and the Differential Evolution (DE) are adopted here to find the optimal weights for the recurrent computationally efficient functional link neural network (RCEFLANN) using a combination of linear and hyperbolic tangent basis functions. The performance of the recurrent computationally efficient FLANN model is compared with that of low complexity neural networks using the Trigonometric, Chebyshev, Laguerre, Legendre, and tangent hyperbolic basis functions in predicting stock prices of Bombay Stock Exchange data and Standard & Poor’s 500 data sets using different evolutionary methods and has been presented in this paper and the results clearly reveal that the recurrent FLANN model trained with the DE outperforms all other FLANN models similarly trained.