دانلود مقاله ISI انگلیسی شماره 111206
ترجمه فارسی عنوان مقاله

انتخاب نمونه کارهای چند دوره ای با سطح ریسک پویایی / بازده مورد انتظار با عدم اطمینان تصادفی فازی

عنوان انگلیسی
Multi-period portfolio selection with dynamic risk/expected-return level under fuzzy random uncertainty
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
111206 2017 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volumes 385–386, April 2017, Pages 1-18

ترجمه کلمات کلیدی
انتخاب نمونه چند دوره ای، ریسک پویا / سطح انتظار بازگشتی، متغیرهای تصادفی فازی، بهینه سازی ذرات ذرات،
کلمات کلیدی انگلیسی
Multi-period portfolio selection; Dynamic risk/expected-return level; Fuzzy random variables; Particle swarm optimization;
پیش نمایش مقاله
پیش نمایش مقاله  انتخاب نمونه کارهای چند دوره ای با سطح ریسک پویایی / بازده مورد انتظار با عدم اطمینان تصادفی فازی

چکیده انگلیسی

In this study, we discuss multi-period portfolio selection problems when security returns are described as fuzzy random variables. The main concern of this work is to apply dynamic risk tolerance and expected return levels in mathematical modeling; i.e., these two indices of each period are influenced by the investment result of the previous period as well as human risk attitudes instead of static values over the entire investment horizon. Essentially, this assumption is based on the reality that investors tend to update targets when their wealth changes. In addition, fuzzy random variables are employed here to incorporate historical data with expert knowledge when estimating security future returns. Based on the above considerations, two multi-period portfolio selection models are built in light of the different risk attitudes. We then provide property analysis on complicated nonlinear optimization problems and derive several equivalents of the models, which can be solved by the existing dynamic programming. In general situations, a fuzzy random simulation-based particle swarm optimization algorithm is developed to search for approximate optima. The performance of this research is exemplified by a real market data-based case study in which the superiority of the dynamic strategy is demonstrated by a comparison with conventional approaches.