دانلود مقاله ISI انگلیسی شماره 44789
ترجمه فارسی عنوان مقاله

مدل EGARCH فازی نوع 2 فاصله ای هیبریدی مبتنی بر جستجوی افتراقی توازن برای پیش بینی نوسانات بازار سهام

عنوان انگلیسی
A differential harmony search based hybrid interval type2 fuzzy EGARCH model for stock market volatility prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
44789 2015 24 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Approximate Reasoning, Volume 59, April 2015, Pages 81–104

ترجمه کلمات کلیدی
لینک های کاربردی شبکه های عصبی - جستجوی توازن دیفرانسیلی
کلمات کلیدی انگلیسی
Volatility forecasting; Stock markets; EGARCH; type1 and type2 fuzzy-EGARCH models; Functional link neural network; Differential harmony search
پیش نمایش مقاله
پیش نمایش مقاله  مدل EGARCH فازی نوع 2 فاصله ای هیبریدی مبتنی بر جستجوی افتراقی توازن برای پیش بینی نوسانات بازار سهام

چکیده انگلیسی

In this paper a new hybrid model integrating an interval type2 fuzzy logic system (IT2FLS) with a computationally efficient functional link artificial neural network (CEFLANN) and an Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model has been proposed for accurate forecasting and modeling of financial data with changing variance over time. The proposed model denoted as IT2F-CE-EGARCH helps to enhance the ability of EGARCH model through a joint estimation of the important features of EGARCH like leverage effect, asymmetric shock by leverage effect with the secondary membership functions of interval type2 TSK FLS and the functional expansion and learning component of a CEFLANN. The secondary membership functions with upper and lower limits of IT2FLS provide a forecasting interval for handling more complicated uncertainties involved in volatility forecasting compared to type1 FLS. The performance of the proposed model has been observed with two membership functions i.e. Gaussian with fixed mean, uncertain variance and Gaussian with fixed variance and uncertain mean. The proposed model has also been compared with a few other fuzzy time series models and GARCH family models based on four performance metrics: MSFE, RMSFE, MAFE and Rel MAE. Again a differential harmony search (DHS) algorithm has been suggested for optimizing the parameters of all the fuzzy time series models. The results indicate that the proposed IT2F-CE-EGARCH model offers significant improvements in volatility forecasting performance in comparison with all other specified models over BSE Sensex and CNX Nifty dataset.