دانلود مقاله ISI انگلیسی شماره 115545
ترجمه فارسی عنوان مقاله

فراتر از نمایندگان رده پایین: بازسازی پایه خوشه ای مستطیلی با ساختار گراف بهینه شده برای چند خوشه بندی طیفی

عنوان انگلیسی
Beyond Low-Rank Representations: Orthogonal clustering basis reconstruction with optimized graph structure for multi-view spectral clustering
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
115545 2018 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neural Networks, Volume 103, July 2018, Pages 1-8

ترجمه کلمات کلیدی
نمایندگی کم رتبه یادگیری زیر فضای چندگانه، خوشه بندی
کلمات کلیدی انگلیسی
Low-Rank Representation; Multi-view subspace learning; Clustering;
پیش نمایش مقاله
پیش نمایش مقاله  فراتر از نمایندگان رده پایین: بازسازی پایه خوشه ای مستطیلی با ساختار گراف بهینه شده برای چند خوشه بندی طیفی

چکیده انگلیسی

Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models.