دانلود مقاله ISI انگلیسی شماره 137086
ترجمه فارسی عنوان مقاله

مدل سازی نفوذ اجتماعی با استفاده از تئوری اطلاعات در شبکه های اجتماعی تلفن همراه

عنوان انگلیسی
Social influence modeling using information theory in mobile social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137086 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Volume 379, 10 February 2017, Pages 146-159

ترجمه کلمات کلیدی
شبکه های اجتماعی موبایل نفوذ اجتماعی، آنتروپی اطلاعات، نمودار ارتباط اجتماعی نفوذ مستقیم، نفوذ غیر مستقیم،
کلمات کلیدی انگلیسی
Mobile social networks; Social influence; Information entropy; social relationship graph; Direct influence; Indirect influence;
پیش نمایش مقاله
پیش نمایش مقاله  مدل سازی نفوذ اجتماعی با استفاده از تئوری اطلاعات در شبکه های اجتماعی تلفن همراه

چکیده انگلیسی

Social influence analysis has become one of the most important technologies in modern information and service industries. Thus, how to measure social influence of one user on other users in a mobile social network is also becoming increasingly important. It is helpful to identify the influential users in mobile social networks, and also helpful to provide important insights into the design of social platforms and applications. However, social influence modeling is an open and challenging issue, and most evaluation models are focused on online social networks, but fail to characterize indirect influence. In this paper, we present a mechanism to quantitatively measure social influence in mobile social networks. We exploit the graph theory to construct a social relationship graph that establishes a solid foundation for the basic understandings of social influence. We present an evaluation model to measure both direct and indirect influence based on the social relationship graph, by introducing friend entropy and interaction frequency entropy to describe the complexity and uncertainty of social influence. Based on the epidemic model, we design an algorithm to characterize propagation dynamics process of social influence, and to evaluate the performance of our solution by using a customized program on the basis of a real-world SMS/MMS-based communication data set. The real world numerical simulations and analysis show that the proposed influence evaluation strategies can characterize the social influence of mobile social networks effectively and efficiently.