دانلود مقاله ISI انگلیسی شماره 142037
ترجمه فارسی عنوان مقاله

تکامل چند جانبه دیفرانسیل برای انتخاب ویژگی در سیستم های تشخیص اصطلاح صورت

عنوان انگلیسی
Multi-Objective Differential Evolution for feature selection in Facial Expression Recognition systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
142037 2017 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 89, 15 December 2017, Pages 129-137

ترجمه کلمات کلیدی
تشخیص چهره، انتخاب ویژگی، تکامل دیفرانسیل، تفاوت های بردار ویژگی، بهینه سازی چند هدفه،
کلمات کلیدی انگلیسی
Facial Expression Recognition; Feature selection; Differential evolution; Feature vector differences; Multi-objective optimization;
پیش نمایش مقاله
پیش نمایش مقاله  تکامل چند جانبه دیفرانسیل برای انتخاب ویژگی در سیستم های تشخیص اصطلاح صورت

چکیده انگلیسی

This paper proposes an efficient feature selection system applied to a Facial Expression Recognition (FER) system. This system, capable of recognizing seven prototypical emotions including neutral expression, is based on a histogram of oriented gradient descriptor (HOG) and difference feature vectors. The emotion feature selection was carried out by using an appropriately modified multi-objective differential evolution algorithm. The number of used features was minimized, while the emotion recognition accuracy of the support vector machine classifiers was maximized simultaneously. ‘The emotion-specific features’ and ‘the more discriminative features over all emotions’ selection strategies were developed, whereby the latter strategy proved to be more efficient using the Friedman statistical test. This person-independent FER system with proposed feature selection was validated on three commonly used evaluation databases, where the mean emotion recognition rate was 98.37% on the Cohn Kanade database, 92.75% on the JAFFE database, and 84.07% on the MMI database, while the number of used features lowered up to 89% with respect to the original difference feature vector length. Compared to the state-of-the-art, the proposed FER method offers good results, while also greatly lowering the number of used features, which, in return, minimizes the computational cost of training the classifiers. The optimization proposed in this paper can be generalized easily to a feature selection for an arbitrary multi-objective, as well as many-objective, problem.