دانلود مقاله ISI انگلیسی شماره 36963
ترجمه فارسی عنوان مقاله

مدل بسته بندی شده موجک پتانسیلهای برانگیخته

عنوان انگلیسی
A Wavelet Packet Model of Evoked Potentials
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
36963 1999 28 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Brain and Language, Volume 66, Issue 1, January 1999, Pages 61–88

ترجمه کلمات کلیدی
مدل بسته بندی شده - موجک - پتانسیلهای برانگیخته
کلمات کلیدی انگلیسی
,Wavelet ,Packet Model ,Evoked Potentials,
پیش نمایش مقاله
پیش نمایش مقاله  مدل بسته بندی شده موجک پتانسیلهای برانگیخته

چکیده انگلیسی

The standard methods for decomposition and analysis of evoked potentials are bandpass filtering, identification of peak amplitudes and latencies, and principal component analysis (PCA). We discuss the limitations of these and other approaches and introduce wavelet packet analysis. Then we propose the “single-channel wavelet packet model,” a new approach in which a unique decomposition is achieved using prior time–frequency information and differences in the responses of the components to changes in experimental conditions. Orthogonal sets of wavelet packets allow a parsimonious time–frequency representation of the components. The method allows energy in some wavelet packets to be shared among two or more components, so the components are not necessarily orthogonal. The single-channel wavelet packet model and PCA both require constraints to achieve a unique decomposition. In PCA, however, the constraints are defined by mathematical convenience and may be unrealistic. In the single-channel wavelet packet model, the constraints are based on prior scientific knowledge. We give an application of the method to auditory evoked potentials recorded from cats. The good frequency resolution of wavelet packets allows us to separate superimposed components in these data. Our present approach yields estimates of component waveforms and the effects of experiment conditions on the amplitude of the components. We discuss future extensions that will provide confidence intervals andpvalues, allow for latency changes, and represent multichannel data.