دانلود مقاله ISI انگلیسی شماره 127153
ترجمه فارسی عنوان مقاله

تقسیم بندی متن صحنه با استفاده از مناطق افراطی تنوع کم و دسته بندی شخصیت مرتب سازی بر اساس

عنوان انگلیسی
Scene text segmentation using low variation extremal regions and sorting based character grouping
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی ترجمه فارسی
127153 2017 30 صفحه PDF سفارش دهید
دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله تقریباً شامل 8461 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 15 روز بعد از پرداخت 761,490 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 8 روز بعد از پرداخت 1,522,980 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 266, 29 November 2017, Pages 56-65

ترجمه کلمات کلیدی
مناطق افراطی، تقسیم بندی متن صحنه، گروه کاری،
کلمات کلیدی انگلیسی
Extremal regions; Scene text segmentation; Character grouping;
پیش نمایش مقاله
پیش نمایش مقاله  تقسیم بندی متن صحنه با استفاده از مناطق افراطی تنوع کم و دسته بندی شخصیت مرتب سازی بر اساس

چکیده انگلیسی

Extraction of textual information from natural scene images is a challenging task due to imaging conditions and diversity of text properties. Segmentation of scene text is important step in the pipeline that significantly affects the final recognition performance. In this paper I propose a new scene text segmentation method. Firstly, a novel approach for character candidates generation based on extremal regions (ERs) is introduced. Subpaths having low area variation are extracted from ER tree. Instead of using minimum variation criterion for selection of character candidates, position of ER in extracted subpath is used as criterion for that purpose. Each subpath is represented by one ER that is sent to SVM-based classification step. After that a novel method for character candidates grouping is used to discard non-character objects that are wrongly classified as characters. Proposed approach estimates vertical positions of the lines by sorting y coordinates of region centroids and checks spatial relation of adjacent regions in the line. This step enhances precision significantly and has lower computational complexity compared to hierarchical clustering methods. Finally, the last step is restoration of character ERs erroneously eliminated by SVM classifier where text layout properties are exploited to correct false negative classifications. Experimental results obtained on the ICDAR 2013 dataset show that the proposed character candidates generation method efficiently prunes repeating regions and achieves character recall rate superior to recently published ER based method. Proposed segmentation algorithm obtains competitive performance compared to state-of-the-art methods.

دانلود فوری مقاله + سفارش ترجمه

نسخه انگلیسی مقاله همین الان قابل دانلود است.

هزینه ترجمه مقاله بر اساس تعداد کلمات مقاله انگلیسی محاسبه می شود.

این مقاله شامل 8461 کلمه می باشد.

هزینه ترجمه مقاله توسط مترجمان با تجربه، طبق جدول زیر محاسبه می شود:

شرح تعرفه ترجمه زمان تحویل جمع هزینه
ترجمه تخصصی - سرعت عادی هر کلمه 90 تومان 15 روز بعد از پرداخت 761,490 تومان
ترجمه تخصصی - سرعت فوری هر کلمه 180 تومان 8 روز بعد از پرداخت 1,522,980 تومان
پس از پرداخت، فوراً می توانید مقاله را دانلود فرمایید.