دانلود مقاله ISI انگلیسی شماره 130631
ترجمه فارسی عنوان مقاله

معادن متعلق به جامعه با استفاده از تقسیم مشترک ماتریس غیر منفی مشترک با لاپلایک گراف

عنوان انگلیسی
Attributed community mining using joint general non-negative matrix factorization with graph Laplacian
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
130631 2018 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 495, 1 April 2018, Pages 324-335

پیش نمایش مقاله
پیش نمایش مقاله  معادن متعلق به جامعه با استفاده از تقسیم مشترک ماتریس غیر منفی مشترک با لاپلایک گراف

چکیده انگلیسی

Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.