دانلود مقاله ISI انگلیسی شماره 132237
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل تاثیر اطلاعات سفر برای به حداقل رساندن پشیمانی انتخاب مسیر

عنوان انگلیسی
Analysing the impact of travel information for minimising the regret of route choice
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
132237 2018 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 88, March 2018, Pages 257-271

ترجمه کلمات کلیدی
انتخاب مسیر، کم اهمیت یادگیری تقویت چندگانه، تخفیف پشیمانی، برنامه ناوبری موبایل اطلاعات سفر،
کلمات کلیدی انگلیسی
Route choice; Regret minimisation; Multiagent reinforcement learning; Regret estimation; Mobile navigation app; Travel information;
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل تاثیر اطلاعات سفر برای به حداقل رساندن پشیمانی انتخاب مسیر

چکیده انگلیسی

In the route choice problem, self-interested drivers aim at choosing routes that minimise travel costs between their origins and destinations. We model this problem as a multiagent reinforcement learning scenario. Here, since agents must adapt to each others’ decisions, the minimisation goal is seen as a moving target. Regret is a well-known performance measure in such settings, and considers how much worse an agent performs compared to the best fixed action in hindsight. In general, regret cannot be computed (and used) by agents because its calculation requires observing the costs of all available routes (including non-taken ones). In contrast to previous works, here we show how agents can compute regret by building upon their experience and via information provided by a mobile (Waze-like) navigation app. Specifically, we compute the regret of each action as a linear combination of local (experience-based) and global (app-based) information. We refer to such a measure as the action regret, which can be used by the agents as reinforcement signal. Under these conditions, agents are able to minimise their external regret even when the cost of routes is not known in advance. Based on experimental evaluation in several abstract road networks, we show that the system converges to approximate User Equilibria.