دانلود مقاله ISI انگلیسی شماره 132295
ترجمه فارسی عنوان مقاله

بهینه سازی شدید تلفات مبتنی بر فاصله در یک شبکه با توجه به دینامیک روز و روز احتمالی

عنوان انگلیسی
Robust optimization of distance-based tolls in a network considering stochastic day to day dynamics
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
132295 2017 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Transportation Research Part C: Emerging Technologies, Volume 79, June 2017, Pages 58-72

ترجمه کلمات کلیدی
قیمت گذاری احتمالی، قیمت گذاری مبتنی بر فاصله، مدل پشیمانی مینیمکس، بهینه سازی قوی، پویایی روز به روز،
کلمات کلیدی انگلیسی
Congestion pricing; Distance-based pricing; Minimax regret model; Robust optimization; Day-to-day dynamics;
پیش نمایش مقاله
پیش نمایش مقاله  بهینه سازی شدید تلفات مبتنی بر فاصله در یک شبکه با توجه به دینامیک روز و روز احتمالی

چکیده انگلیسی

This paper investigates the nonlinear distance-based congestion pricing in a network considering stochastic day-to-day dynamics. After an implementation/adjustment of a congestion pricing scheme, the network flows in a certain period of days are not on an equilibrium state, thus it is problematic to take the equilibrium-based indexes as the pricing objective. Therefore, the concept of robust optimization is taken for the congestion toll determination problem, which takes into account the network performance of each day. First, a minimax model which minimizes the maximum regret on each day is proposed. Taking as a constraint of the minimax model, a path-based day to day dynamics model under stochastic user equilibrium (SUE) constraints is discussed in this paper. It is difficult to solve this minimax model by exact algorithms because of the implicity of the flow map function. Hence, a two-phase artificial bee colony algorithm is developed to solve the proposed minimax regret model, of which the first phase solves the minimal expected total travel cost for each day and the second phase handles the minimax robust optimization problem. Finally, a numerical example is conducted to validate the proposed models and methods.