دانلود مقاله ISI انگلیسی شماره 126292
ترجمه فارسی عنوان مقاله

بی اعتمادی و بی اعتبار بودن بازاریابی

عنوان انگلیسی
Metrics unreliability and marketing overspending
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
126292 2017 19 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Research in Marketing, Volume 34, Issue 4, December 2017, Pages 761-779

ترجمه کلمات کلیدی
مدل های پویا، سر و صدای اندازه گیری بودجه مطلوب و تخصیص، برآورد فیلتر کالمن، بازارهای نوظهور،
کلمات کلیدی انگلیسی
Dynamic models; Measurement noise; Optimal budget and allocations; Kalman filter estimation; Emerging markets;
پیش نمایش مقاله
پیش نمایش مقاله  بی اعتمادی و بی اعتبار بودن بازاریابی

چکیده انگلیسی

To answer these open questions, first, based on Kalman filtering theory, we show how to estimate and infer dynamic demand models using unreliable sales metrics. Then, we furnish evidence of significant measurement noise in both retail audit and company's internal data to track brand sales. We replicate these results across six largest political regions in the emerging Indian markets for a major hair care brand. Next, we analytically derive the optimal weights to combine noisy and biased metrics to infer the latent demand. This result uncovers a counter-intuitive insight that two independent noisy metrics are better than one even when the second metric is noisier. In other words, a composite metric serves as noise reduction device as it is more reliable than individual noisy metrics. Subsequently, we derive closed-form expressions for the optimal budget and its optimal allocation to advertising and promotions activities in the presence of unreliable sales metrics. Based on these results, we discover that marketing overspending increase as metrics unreliability increases. Furthermore, overconfidence —the presumption that the metrics are reliable— leads to overspending on advertising and promotions. Managers should reduce advertising and promotional spending when sales metrics are noisy. Finally, we provide a simple correction factor that managers can use to eliminate overspending.