دانلود مقاله ISI انگلیسی شماره 129836
ترجمه فارسی عنوان مقاله

خواننده چهره محاسباتی بر اساس برآورد ویژگی صورت

عنوان انگلیسی
Computational face reader based on facial attribute estimation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
129836 2017 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Neurocomputing, Volume 236, 2 May 2017, Pages 153-163

ترجمه کلمات کلیدی
چگونگی آنتروپوسکوپی چینی چینی چهره خواندن، برآورد ویژگی چهره، شبکه های عصبی کانولوشن عمیق، لایه همپوشانی منطقه،
کلمات کلیدی انگلیسی
Chinese anthroposcopy; Chinese face reading; Facial attribute estimation; Deep convolutional neural networks; Facial region pooling layer;
پیش نمایش مقاله
پیش نمایش مقاله  خواننده چهره محاسباتی بر اساس برآورد ویژگی صورت

چکیده انگلیسی

Chinese face reading has demonstrated the often satisfying capabilities to tell the characteristics (mostly exaggerated as fortune) of a person by reading his/her face, i.e. understanding the fine-grained facial attributes (e.g., length of nose, single/double-fold eyelid, density of eyebrows, etc.). Thus, a smart face reading system should estimate the fine-grained facial attributes well. Therefore, In this paper, we first study the fine-grained facial attribute estimation problem and propose a novel deep convolutional network equipped with a new facial region pooling layer (called FRP-net), to accurately estimate the fine-grained facial attributes. To capture the characteristics of fine-grained facial attributes, the embedded FRP layer implements the pooling operation on the searched facial region windows (locates the region of each facial attribute) instead of the commonly-used sliding windows. Further, we push the proposed fine-grained facial attribute estimation method into the face reading problem and present a computational face reader system to automatically infer the characteristics of a person based on his/her face. For example, it can estimate the attractive and easy-going characteristics of a Chinese person from his/her big eyes according to the Chinese anthroposcopy literature. The experimental results on facial attribute estimation demonstrate the superiority of the proposed FRP-net compared to the baselines, and the qualitative and quantitative evaluations on face reading validate the excellence of the presented face reader system.