دانلود مقاله ISI انگلیسی شماره 129843
ترجمه فارسی عنوان مقاله

طبقه بندی ویژگی های رگرسیون چهره از طریق یادگیری فرهنگ لغت همزمان

عنوان انگلیسی
Regression Facial Attribute Classification via simultaneous dictionary learning
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
129843 2017 43 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Pattern Recognition, Volume 62, February 2017, Pages 99-113

پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی ویژگی های رگرسیون چهره از طریق یادگیری فرهنگ لغت همزمان

چکیده انگلیسی

Recently, many researchers have attempted to classify Facial Attributes (FAs) by representing characteristics of FAs such as attractiveness, age, smiling and so on. In this context, recent studies have demonstrated that visual FAs are a strong background for many applications such as face verification, face search and so on. However, Facial Attribute Classification (FAC) in a wide range of attributes based on the regression representation -predicting of FAs as real-valued labels- is still a significant challenge in computer vision and psychology. In this paper, a regression model formulation is proposed for FAC in a wide range of FAs (e.g. 73 FAs). The proposed method accommodates real-valued scores to the probability of what percentage of the given FAs is present in the input image. To this end, two simultaneous dictionary learning methods are proposed to learn the regression and identity feature dictionaries simultaneously. Accordingly, a multi-level feature extraction is proposed for FAC. Then, four regression classification methods are proposed using a regression model formulated based on dictionary learning, SRC and CRC. Convincing results are acquired to handle a wide range of FAs and represent the probability of FAs on the PubFig, LFW, Groups and 10k US Adult Faces databases compared to several state-of-the-art methods.