دانلود مقاله ISI انگلیسی شماره 132104
ترجمه فارسی عنوان مقاله

بررسی ساختارهای غنی سه گانه توسط ویژگی های نظریه گرافی در شبکه های پیچیده

عنوان انگلیسی
Exploring triad-rich substructures by graph-theoretic characterizations in complex networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
132104 2017 17 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Physica A: Statistical Mechanics and its Applications, Volume 468, 15 February 2017, Pages 53-69

ترجمه کلمات کلیدی
شبکه های پیچیده تشخیص جامعه، زیرساخت غنی سه گانه، ویژگی های گراف نظری، مرکزیت لبه چیدمان، با هم تداخل دارند،
کلمات کلیدی انگلیسی
Complex networks; Community detection; Triad-rich substructure; Graph-theoretic characterizations; Edge niche centrality; Overlapping;
پیش نمایش مقاله
پیش نمایش مقاله  بررسی ساختارهای غنی سه گانه توسط ویژگی های نظریه گرافی در شبکه های پیچیده

چکیده انگلیسی

One of the most important problems in complex networks is how to detect communities accurately. The main challenge lies in the fact that traditional definition about communities does not always capture the intrinsic features of communities. Motivated by the observation that communities in PPI networks tend to consist of an abundance of interacting triad motifs, we define a 2-club substructure with diameter 2 possessing triad-rich property to describe a community. Based on the triad-rich substructure, we design a DIVision Algorithm using our proposed edge Niche Centrality DIVANC to detect communities effectively in complex networks. We also extend DIVANC to detect overlapping communities by proposing a simple 2-hop overlapping strategy. To verify the effectiveness of triad-rich substructures, we compare DIVANC with existing algorithms on PPI networks, LFR synthetic networks and football networks. The experimental results show that DIVANC outperforms most other algorithms significantly and, in particular, can detect sparse communities.