دانلود مقاله ISI انگلیسی شماره 126313
ترجمه فارسی عنوان مقاله

مبارزه با اسپم های در حال رشد در شبکه های اجتماعی آنلاین

عنوان انگلیسی
Combating the evolving spammers in online social networks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
126313 2018 32 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Computers & Security, Volume 72, January 2018, Pages 60-73

ترجمه کلمات کلیدی
شبکه های اجتماعی آنلاین، تشخیص اسپم، تکامل زمانی، فراگیری ماشین، طبقه بندی،
کلمات کلیدی انگلیسی
Online social networks; Spammer detection; Temporal evolution; Machine learning; Classification;
پیش نمایش مقاله
پیش نمایش مقاله  مبارزه با اسپم های در حال رشد در شبکه های اجتماعی آنلاین

چکیده انگلیسی

Online social networks, such as Facebook and Sina Weibo, have become the most popular platforms for information sharing and social activities. Spammers have utilized social networks as a new way to spread spam information using fake accounts. Many detection methods have been proposed to solve this problem, and have been proved to be successful to some extent. However, as the spammers' strategies for evading detection evolve, many existing methods lose their efficacy. A major limitation of previous approaches is that they are using the features from a static time point to detect spammers, without considering temporal factors. In this study, we approach the challenge of spammer detection by leveraging the temporal evolution patterns of users. We propose a dynamic metric to measure the change in users' activities and design new features to quantify users' evolution patterns. Then we develop a framework by combining unsupervised and supervised learning to distinguish between spammers and legitimate users. We test our method on a real world dataset with a large number of users. The evaluation results show that our approach can efficiently distinguish the difference between spammers and legitimate users regarding temporal evolution patterns. It also demonstrates the high level of similarity in the spammers' temporal evolution patterns. Compared with other detection methods, our method can achieve better performance. To the best of our knowledge, our study is the first to provide a generic and efficient framework to depict the evolutional pattern of users. It can handle the problem of spammers updating their strategies to evade detection and is a valuable reference for this research field.