دانلود مقاله ISI انگلیسی شماره 104215
ترجمه فارسی عنوان مقاله

بهبود قاعده معنایی در سیستم های متخصص قانون مبتنی بر ضد تقلب

عنوان انگلیسی
Enhancing semantic consistency in anti-fraud rule-based expert systems
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
104215 2017 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 90, 30 December 2017, Pages 332-343

ترجمه کلمات کلیدی
مدل معنایی، استدلال هستی شناسی، سیستم کارشناس مبتنی بر قانون، سیستم های متخصص تشخیص تقلب،
کلمات کلیدی انگلیسی
Semantic model; Ontology reasoning; Rule-based expert system; Fraud detection expert systems;
پیش نمایش مقاله
پیش نمایش مقاله  بهبود قاعده معنایی در سیستم های متخصص قانون مبتنی بر ضد تقلب

چکیده انگلیسی

In this study, an ontology-driven approach is proposed for semantic conflict detection and classification in rule-based expert systems. It focuses on the critical case of anti-fraud rule repositories for the inspection of Card Not Present (CNP) transactions in e-commerce environments. The main motivation is to examine and curate anti-fraud rule datasets to avoid semantic conflicts that could lead the underpinning expert system to incorrectly perform, e. g., by accepting fraudulent transactions and/or by discarding harmless ones. The proposed approach is based on Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL) technologies to develop an anti-fraud rule ontology and reasoning tasks, respectively. The three main contributions of this work are: first, the creation of a conceptual knowledge model for describing anti-fraud rules and their relationships; second, the development of semantic rules as conflict-resolution methods for anti-fraud expert systems; third, experimental facts are gathered to evaluate and validate the proposed model. A real-world use case in the e-commerce (e-Tourism) industry is used to explain the ontological knowledge design and its use. The experiments show that ontological approaches can effectively discover and classify conflicts in rule-based expert systems in the field of anti-fraud applications. The proposal is also applicable to other domains where knowledge rule bases are involved.