دانلود مقاله ISI انگلیسی شماره 104219
ترجمه فارسی عنوان مقاله

با استفاده از شبکه های نژادی نسبی برای بهبود کارایی طبقه بندی در شناسایی تقلب کارت اعتباری

عنوان انگلیسی
Using generative adversarial networks for improving classification effectiveness in credit card fraud detection
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
104219 2017 21 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Information Sciences, Available online 25 December 2017

ترجمه کلمات کلیدی
تشخیص تقلب، طبقه بندی تحت نظارت، یادگیری عمیق، شبکه های مشروح تولیدی،
کلمات کلیدی انگلیسی
Fraud detection; Supervised classification; Deep learning; Generative adversarial networks;
پیش نمایش مقاله
پیش نمایش مقاله  با استفاده از شبکه های نژادی نسبی برای بهبود کارایی طبقه بندی در شناسایی تقلب کارت اعتباری

چکیده انگلیسی

In the last years, the number of frauds in credit card-based online payments has grown dramatically, pushing banks and e-commerce organizations to implement automatic fraud detection systems, performing data mining on huge transaction logs. Machine learning seems to be one of the most promising solutions for spotting illicit transactions, by distinguishing fraudulent and non-fraudulent instances through the use of supervised binary classification systems properly trained from pre-screened sample datasets. However, in such a specific application domain, datasets available for training are strongly imbalanced, with the class of interest considerably less represented than the other. This significantly reduces the effectiveness of binary classifiers, undesirably biasing the results toward the prevailing class, while we are interested in the minority class. Oversampling the minority class has been adopted to alleviate this problem, but this method still has some drawbacks. Generative Adversarial Networks are general, flexible, and powerful generative deep learning models that have achieved success in producing convincingly real-looking images. We trained a GAN to output mimicked minority class examples, which were then merged with training data into an augmented training set so that the effectiveness of a classifier can be improved. Experiments show that a classifier trained on the augmented set outperforms the same classifier trained on the original data, especially as far the sensitivity is concerned, resulting in an effective fraud detection mechanism.