دانلود مقاله ISI انگلیسی شماره 114868
ترجمه فارسی عنوان مقاله

طبقه بندی گونه های درخت درختی با استفاده از یک تصویر پراکنده با استفاده از یک روش نوسان پیکسل

عنوان انگلیسی
Crown-level tree species classification from AISA hyperspectral imagery using an innovative pixel-weighting approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114868 2018 10 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Applied Earth Observation and Geoinformation, Volume 68, June 2018, Pages 298-307

ترجمه کلمات کلیدی
رویکرد وزن پیکسل، تصاویر پرترافیک، طبقه بندی درختان، طیف مقیاس طوسی،
کلمات کلیدی انگلیسی
Pixel-weighting approach; Hyperspectral imagery; Tree species classification; Crown-scale spectra;
پیش نمایش مقاله
پیش نمایش مقاله  طبقه بندی گونه های درخت درختی با استفاده از یک تصویر پراکنده با استفاده از یک روش نوسان پیکسل

چکیده انگلیسی

Crown-level tree species classification is a challenging task due to the spectral similarity among different tree species. Shadow, underlying objects, and other materials within a crown may decrease the purity of extracted crown spectra and further reduce classification accuracy. To address this problem, an innovative pixel-weighting approach was developed for tree species classification at the crown level. The method utilized high density discrete LiDAR data for individual tree delineation and Airborne Imaging Spectrometer for Applications (AISA) hyperspectral imagery for pure crown-scale spectra extraction. Specifically, three steps were included: 1) individual tree identification using LiDAR data, 2) pixel-weighted representative crown spectra calculation using hyperspectral imagery, with which pixel-based illuminated-leaf fractions estimated using a linear spectral mixture analysis (LSMA) were employed as weighted factors, and 3) representative spectra based tree species classification was performed through applying a support vector machine (SVM) approach. Analysis of results suggests that the developed pixel-weighting approach (OA = 82.12%, Kc = 0.74) performed better than treetop-based (OA = 70.86%, Kc = 0.58) and pixel-majority methods (OA = 72.26, Kc = 0.62) in terms of classification accuracy. McNemar tests indicated the differences in accuracy between pixel-weighting and treetop-based approaches as well as that between pixel-weighting and pixel-majority approaches were statistically significant.