دانلود مقاله ISI انگلیسی شماره 135013
ترجمه فارسی عنوان مقاله

یک رویکرد تکراری برای برنامه ریزی مخلوط مورد در شرایط نامطمئن

عنوان انگلیسی
An iterative approach for case mix planning under uncertainty
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
135013 2018 35 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Omega, Volume 76, April 2018, Pages 160-173

ترجمه کلمات کلیدی
مدیریت بهداشت و درمان، برنامه ریزی ریاضی، شبیه سازی،
کلمات کلیدی انگلیسی
Health care management; Math programming; Simulation;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد تکراری برای برنامه ریزی مخلوط مورد در شرایط نامطمئن

چکیده انگلیسی

Case mix planning refers to allocating available time in the operating rooms composing an operating theater (OT) among different surgical specialties. Case mix planning is an important tool for achieving the goals of a hospital with respect to quality of care and financial position. Case mix planning is becoming increasingly prevalent as hospital reimbursement continues to shift from fee-for-service to reimbursement based on diagnostic-related groups. Existing approaches for case mix planning in the academic and medical literature follow a traditional approach that identifies a single “optimal” solution. To ensure tractability, such approaches often exclude several complicating factors such as uncertain patient arrivals, uncertain operation time requirements, and the arrival of patients requiring urgent care. The exclusions limit the applicability of the solution in practice. Thus, we develop a multi-phase approach that utilizes mathematical programming and simulation to generate a pool of candidate solutions. Using simulation allows us to evaluate each candidate solution with respect to a broad range of strategic and operational performance measures including expected patient reimbursement, overutilization of the OT, and the utilization of downstream recovery wards. Providing a pool of solutions, instead of a single solution, gives decision-makers several options from which they may select based on hospital goals. We conduct experiments based on a large, publicly available dataset that documents patient admissions in 203 U.S. hospitals. In comparison to a more traditional single-solution approach, we show that our solution pool approach identifies case mix plans with higher expected patient reimbursement, lower overutilization of OT time, and lower variability in the number of beds required in downstream recovery wards.