دانلود مقاله ISI انگلیسی شماره 136770
ترجمه فارسی عنوان مقاله

یک رویکرد مدل سازی فازی امکان پذیر برای برآورد ارزش در معرض خطر

عنوان انگلیسی
An evolving possibilistic fuzzy modeling approach for Value-at-Risk estimation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136770 2017 40 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Applied Soft Computing, Volume 60, November 2017, Pages 820-830

ترجمه کلمات کلیدی
ارزش در معرض خطر، سیستم های فازی مدیریت ریسک، مدل سازی تکامل یافته، دارایی، مالیه، سرمایه گذاری،
کلمات کلیدی انگلیسی
Value-at-Risk; Fuzzy systems; Risk management; Evolving modeling; Finance;
پیش نمایش مقاله
پیش نمایش مقاله  یک رویکرد مدل سازی فازی امکان پذیر برای برآورد ارزش در معرض خطر

چکیده انگلیسی

Market risk exposure plays a key role in risk management. A way to measure risk exposure is to evaluate the losses likely to incur when the assets prices of a portfolio decline. Most financial institutions rely on Value-at-Risk (VaR) estimates to measure downside market risk. This paper suggests an evolving possibilistic fuzzy modeling (ePFM) approach to estimate VaR. The approach is an extension of the possibilistic fuzzy c-means clustering and functional fuzzy rule-based modeling within the framework of incremental learning. Evolving possibilistic modeling employs memberships and typicalities to update the cluster structure and corresponding fuzzy rules using a statistical control distance-based criterion. A utility measure evaluates the quality of the current cluster structure and associated model. Data from the main global equity market indexes of United States, United Kingdom, Germany, Spain, and Brazil from January 2000 to December 2012 are used to estimate VaR using ePFM. The performance of ePFM is evaluated and compared with traditional VaR benchmarks such as Historical Simulation, GARCH, EWMA, and Extreme Value Theory based VaR, as well as with state of the art evolving approaches. The results suggest that ePFM is a potential candidate for VaR modeling because it achieves better results than the alternative approaches.