دانلود مقاله ISI انگلیسی شماره 136776
ترجمه فارسی عنوان مقاله

پیش بینی کوتاه مدت از مشخصات تابش خورشیدی، مبتنی بر داده ها

عنوان انگلیسی
Data-driven short-term forecasting of solar irradiance profile
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136776 2017 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Energy Procedia, Volume 143, December 2017, Pages 572-578

ترجمه کلمات کلیدی
پیش بینی کوتاه مدت، تابش خورشید، پیش بینی نوسانات،
کلمات کلیدی انگلیسی
short-term forecasting; solar irradiance; volatility prediction;
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی کوتاه مدت از مشخصات تابش خورشیدی، مبتنی بر داده ها

چکیده انگلیسی

This paper presents a short-range forecasting system of 30-min irradiance averages for 0.5 to 6 hours ahead based on per-min data of solar irradiance and ambient temperature. In addition, it explores the possibility of predicting volatility by looking at the distribution of solar irradiance in the next 30-min period with a novel approach that estimates the proportion of points within each of 21 bands defined to cover the range of irradiance. With it, upper and lower bound predictions for the period are obtained to calculate upside and downside risks posed by photovoltaic (PV) generation. Using persistence models for comparison and assessing accuracy across 8 locations, all models showed marked improvement, especially at longer forecast horizons. On average, MAE of point forecast models decreased by 9% (98 to 89 W/m2) and 58% (299 to 125 W/m2) for the 0.5 and 6-hour horizons respectively. For volatility models, MAE decreased from 4.8 to 3.7% in proportion predictions while errors of making upper and lower bound predictions outside the actual range of per-min fluctuations decreased from 43.0 to 10.4% and 30.6 to 3.4% respectively.