دانلود مقاله ISI انگلیسی شماره 136780
ترجمه فارسی عنوان مقاله

ارزیابی تحلیلی و هدر دادن درآمد سالانه متغیر، مزایای استقبال طولانی مدت را تضمین می کند

عنوان انگلیسی
Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
136780 2017 31 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Insurance: Mathematics and Economics, Volume 72, January 2017, Pages 36-48

ترجمه کلمات کلیدی
درآمد متغیر درآمد تضمین شده، مزایای حذف طول عمر تضمین شده، ارزیابی ریسک پذیر، دلتا-هجی کردن، تابع چگالی احتمال پذیری، مبالغ نمایشی،
کلمات کلیدی انگلیسی
Variable annuity guaranteed benefit; Guaranteed lifetime withdrawal benefit; Risk-neutral valuation; Delta-hedging; Fitting probability density function; Exponential sums;
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی تحلیلی و هدر دادن درآمد سالانه متغیر، مزایای استقبال طولانی مدت را تضمین می کند

چکیده انگلیسی

Variable annuity is a retirement planning product that allows policyholders to invest their premiums in equity funds. In addition to the participation in equity investments, the majority of variable annuity products in today’s market offer various types of investment guarantees, protecting policyholders from the downside risk of their investments. One of the most popular investment guarantees is known as the guaranteed lifetime withdrawal benefit (GLWB). In current market practice, the development of hedging portfolios for such a product relies heavily on Monte Carlo simulations, as there were no known closed-form formulas available in the existing actuarial literature. In this paper, we show that such analytical solutions can in fact be determined for the risk-neutral valuation and delta-hedging of the plain-vanilla GLWB. As we demonstrate by numerical examples, this approach drastically reduces run time as compared to Monte Carlo simulations. The paper also presents a novel technique of fitting exponential sums to a mortality density function, which is numerically more efficient and accurate than the existing methods in the literature.