دانلود مقاله ISI انگلیسی شماره 137129
ترجمه فارسی عنوان مقاله

مدلهای سازگاری و دماهای سنگین با استفاده از پیش بینی تورم

عنوان انگلیسی
Adaptive models and heavy tails with an application to inflation forecasting
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
137129 2017 20 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Forecasting, Volume 33, Issue 2, April–June 2017, Pages 482-501

پیش نمایش مقاله
پیش نمایش مقاله  مدلهای سازگاری و دماهای سنگین با استفاده از پیش بینی تورم

چکیده انگلیسی

This paper introduces an adaptive algorithm for time-varying autoregressive models in the presence of heavy tails. The evolution of the parameters is determined by the score of the conditional distribution, with the resulting model being observation-driven and being estimated using classical methods. In particular, we consider time variation in both the coefficients and the volatility, emphasizing how the two interact with each other. Meaningful restrictions are imposed on the model parameters in order to achieve local stationarity and bounded mean values. The model is applied to the analysis of inflation dynamics with the following results: allowing for heavy tails leads to significant improvements in terms of both the fit and forecasts, and the adoption of the Student-t distribution proves to be crucial for obtaining well-calibrated density forecasts. These results are obtained using the US CPI inflation rate and are confirmed by other inflation indicators, as well as for the CPI inflation of the other G7 countries.