دانلود مقاله ISI انگلیسی شماره 145905
ترجمه فارسی عنوان مقاله

ماشین های آموزش عالی برای ارزیابی اعتبار: ارزیابی تجربی

عنوان انگلیسی
Extreme learning machines for credit scoring: An empirical evaluation
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
145905 2017 36 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 86, 15 November 2017, Pages 42-53

ترجمه کلمات کلیدی
نمره اعتباری، شبکه های عصبی مصنوعی، ماشین های یادگیری شدید گروه سازنده
کلمات کلیدی انگلیسی
Credit scoring; Artificial neural networks; Extreme learning machines; Classifier ensembles;
پیش نمایش مقاله
پیش نمایش مقاله  ماشین های آموزش عالی برای ارزیابی اعتبار: ارزیابی تجربی

چکیده انگلیسی

Classification algorithms are used in many domains to extract information from data, predict the entry probability of events of interest, and, eventually, support decision making. This paper explores the potential of extreme learning machines (ELM), a recently proposed type of artificial neural network, for consumer credit risk management. ELM possess some interesting properties, which might enable them to improve the quality of model-based decision support. To test this, we empirically compare ELM to established scoring techniques according to three performance criteria: ease of use, resource consumption, and predictive accuracy. The mathematical roots of ELM suggest that they are especially suitable as a base model within ensemble classifiers. Therefore, to obtain a holistic picture of their potential, we assess ELM in isolation and in conjunction with different ensemble frameworks. The empirical results confirm the conceptual advantages of ELM and indicate that they are a valuable alternative to other credit risk modelling methods.