دانلود مقاله ISI انگلیسی شماره 146654
ترجمه فارسی عنوان مقاله

انحرافات بزرگ برای اندازه گیری خطر در مدل های مخلوط محدود

عنوان انگلیسی
Large deviations for risk measures in finite mixture models
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
146654 2018 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Insurance: Mathematics and Economics, Volume 80, May 2018, Pages 84-92

پیش نمایش مقاله
پیش نمایش مقاله  انحرافات بزرگ برای اندازه گیری خطر در مدل های مخلوط محدود

چکیده انگلیسی

Due to their heterogeneity, insurance risks can be properly described as a mixture of different fixed models, where the weights assigned to each model may be estimated empirically from a sample of available data. If a risk measure is evaluated on the estimated mixture instead of the (unknown) true one, then it is important to investigate the committed error. In this paper we study the asymptotic behaviour of estimated risk measures, as the data sample size tends to infinity, in the fashion of large deviations. We obtain large deviation results by applying the contraction principle, and the rate functions are given by a suitable variational formula; explicit expressions are available for mixtures of two models. Finally, our results are applied to the most common risk measures, namely the quantiles, the Expected Shortfall and the shortfall risk measure.