دانلود مقاله ISI انگلیسی شماره 150429
ترجمه فارسی عنوان مقاله

تخصیص بهینه از ماشین های مجازی در محیط های چند ابر با قیمت های ذخیره شده و بر اساس تقاضا

عنوان انگلیسی
Optimal allocation of virtual machines in multi-cloud environments with reserved and on-demand pricing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150429 2017 62 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Future Generation Computer Systems, Volume 71, June 2017, Pages 129-144

ترجمه کلمات کلیدی
پردازش ابری، تخصیص ماشین مجازی، چند ابر، موارد رزرو شده، بهینه سازی هزینه،
کلمات کلیدی انگلیسی
Cloud computing; Virtual machine allocation; Multi-cloud; Reserved instances; Cost optimization;
پیش نمایش مقاله
پیش نمایش مقاله  تخصیص بهینه از ماشین های مجازی در محیط های چند ابر با قیمت های ذخیره شده و بر اساس تقاضا

چکیده انگلیسی

In the Cloud Computing market, a significant number of cloud providers offer Infrastructure as a Service (IaaS), including the capability of deploying virtual machines of many different types. The deployment of a service in a public provider generates a cost derived from the rental of the allocated virtual machines. In this paper we present LLOOVIA (Load Level based OpimizatiOn for VIrtual machine Allocation), an optimization technique designed for the optimal allocation of the virtual machines required by a service, in order to minimize its cost, while guaranteeing the required level of performance. LLOOVIA considers virtual machine types, different kinds of limits imposed by providers, and two price schemas for virtual machines: reserved and on-demand. LLOOVIA, which can be used with multi-cloud environments, provides two types of solutions: (1) the optimal solution and (2) the approximated solution based on a novel approach that uses binning applied on histograms of load levels. An extensive set of experiments has shown that when the size of the problem is huge, the approximated solution is calculated in a much shorter time and is very close to the optimal one. The technique presented has been applied to a set of case studies, based on the Wikipedia workload. These cases demonstrate that LLOOVIA can handle problems in which hundreds of virtual machines of many different types, multiple providers, and different kinds of limits are used.