دانلود مقاله ISI انگلیسی شماره 150825
ترجمه فارسی عنوان مقاله

برخورد با برابری و سود برای تخصیص آب در یک حوضه دریاچه: یک روش بهینه سازی تصادفی مبتنی بر ضریب جینی

عنوان انگلیسی
Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
150825 2018 47 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Hydrology, Volume 561, June 2018, Pages 322-334

پیش نمایش مقاله
پیش نمایش مقاله  برخورد با برابری و سود برای تخصیص آب در یک حوضه دریاچه: یک روش بهینه سازی تصادفی مبتنی بر ضریب جینی

چکیده انگلیسی

A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.