دانلود مقاله ISI انگلیسی شماره 48258
ترجمه فارسی عنوان مقاله

افزایش بهبود یافته در انتخاب ویژگی برای پیش بینی ورشکستگی شرکت های بزرگ

عنوان انگلیسی
An improved boosting based on feature selection for corporate bankruptcy prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48258 2014 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 41, Issue 5, April 2014, Pages 2353–2361

ترجمه کلمات کلیدی
پیش بینی ورشکستگی شرکت های بزرگ - آموزش اثر کلی؛ افزایش؛ انتخاب ویژگی
کلمات کلیدی انگلیسی
Corporate bankruptcy prediction; Ensemble learning; Boosting; Feature selection
پیش نمایش مقاله
پیش نمایش مقاله  افزایش بهبود یافته در انتخاب ویژگی برای پیش بینی ورشکستگی شرکت های بزرگ

چکیده انگلیسی

With the recent financial crisis and European debt crisis, corporate bankruptcy prediction has become an increasingly important issue for financial institutions. Many statistical and intelligent methods have been proposed, however, there is no overall best method has been used in predicting corporate bankruptcy. Recent studies suggest ensemble learning methods may have potential applicability in corporate bankruptcy prediction. In this paper, a new and improved Boosting, FS-Boosting, is proposed to predict corporate bankruptcy. Through injecting feature selection strategy into Boosting, FS-Booting can get better performance as base learners in FS-Boosting could get more accuracy and diversity. For the testing and illustration purposes, two real world bankruptcy datasets were selected to demonstrate the effectiveness and feasibility of FS-Boosting. Experimental results reveal that FS-Boosting could be used as an alternative method for the corporate bankruptcy prediction.