دانلود مقاله ISI انگلیسی شماره 48261
ترجمه فارسی عنوان مقاله

پیش بینی ورشکستگی شخصی توسط داده کاوی کارت اعتباری

عنوان انگلیسی
Personal bankruptcy prediction by mining credit card data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48261 2013 12 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 2, 1 February 2013, Pages 665–676

ترجمه کلمات کلیدی
داده کاوی - پیش بینی ورشکستگی شخصی - استخراج توالی
کلمات کلیدی انگلیسی
Data mining; Personal bankruptcy prediction; Sequence mining
پیش نمایش مقاله
پیش نمایش مقاله  پیش بینی ورشکستگی شخصی توسط داده کاوی کارت اعتباری

چکیده انگلیسی

A personal bankruptcy prediction system running on credit card data is proposed. Personal bankruptcy, which usually results in significant losses to creditors, is a rapidly increasing yet little understood phenomenon. The most commonly used methods in personal bankruptcy prediction are credit scoring models. Some data mining models have also been investigated in this domain. Neither the scoring models nor the existing data mining methods adequately take sequence information in credit card data into account. In our system, sequence patterns, obtained by developing sequence mining techniques and applying them to credit card data from one major Canadian bank, are employed as main predictors. The mined sequence patterns, which we refer to as bankruptcy features, are represented in low-dimensional vector space. From the new feature space, which can be extended with some existing prediction-capable features (e.g., credit score), a support vector machine (SVM) classifier is built to combine these mined and already existing features. Our system is readily comprehensible and demonstrates promising prediction performance.