دانلود مقاله ISI انگلیسی شماره 48305
ترجمه فارسی عنوان مقاله

تجزیه و تحلیل تفکیک حداقل مربعات جزئی برای پیش بینی ورشکستگی

عنوان انگلیسی
Partial Least Square Discriminant Analysis for bankruptcy prediction
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48305 2013 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Decision Support Systems, Volume 54, Issue 3, February 2013, Pages 1245–1255

ترجمه کلمات کلیدی
ورشکستگی؛ نسبت های مالی؛ بحران بانکی؛ پرداخت بدهی - داده کاوی
کلمات کلیدی انگلیسی
Bankruptcy; Financial ratios; Banking crisis; Solvency; Data mining; PLS-DA
پیش نمایش مقاله
پیش نمایش مقاله  تجزیه و تحلیل تفکیک حداقل مربعات جزئی برای پیش بینی ورشکستگی

چکیده انگلیسی

This paper uses Partial Least Square Discriminant Analysis (PLS-DA) for the prediction of the 2008 USA banking crisis. PLS regression transforms a set of correlated explanatory variables into a new set of uncorrelated variables, which is appropriate in the presence of multicollinearity. PLS-DA performs a PLS regression with a dichotomous dependent variable. The performance of this technique is compared to the performance of 8 algorithms widely used in bankruptcy prediction. In terms of accuracy, precision, F-score, Type I error and Type II error, results are similar; no algorithm outperforms the others. Behind performance, each algorithm assigns a score to each bank and classifies it as solvent or failed. These results have been analyzed by means of contingency tables, correlations, cluster analysis and reduction dimensionality techniques. PLS-DA results are very close to those obtained by Linear Discriminant Analysis and Support Vector Machine.