دانلود مقاله ISI انگلیسی شماره 48556
ترجمه فارسی عنوان مقاله

مجموعه دقیق محله و طبقه بندی کننده امتیازدهی اعتباری ترکیبی مبتنی بر SVM

عنوان انگلیسی
Neighborhood rough set and SVM based hybrid credit scoring classifier
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48556 2011 5 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 9, September 2011, Pages 11300–11304

ترجمه کلمات کلیدی
محله - مجموعه سخت - SVM - امتیازدهی اعتباری
کلمات کلیدی انگلیسی
Neighborhood; Rough set; SVM; Credit scoring
پیش نمایش مقاله
پیش نمایش مقاله  مجموعه دقیق محله و طبقه بندی کننده امتیازدهی اعتباری ترکیبی مبتنی بر SVM

چکیده انگلیسی

The credit scoring model development has become a very important issue, as the credit industry is highly competitive. Therefore, considerable credit scoring models have been widely studied in the areas of statistics to improve the accuracy of credit scoring during the past few years. This study constructs a hybrid SVM-based credit scoring models to evaluate the applicant’s credit score according to the applicant’s input features: (1) using neighborhood rough set to select input features; (2) using grid search to optimize RBF kernel parameters; (3) using the hybrid optimal input features and model parameters to solve the credit scoring problem with 10-fold cross validation; (4) comparing the accuracy of the proposed method with other methods. Experiment results demonstrate that the neighborhood rough set and SVM based hybrid classifier has the best credit scoring capability compared with other hybrid classifiers. It also outperforms linear discriminant analysis, logistic regression and neural networks.