دانلود مقاله ISI انگلیسی شماره 48567
ترجمه فارسی عنوان مقاله

طبقه بندی کننده متنی ساختمان با یکپارچه سازی روش طبقه بندی مبتنی بر قواعد فازی و روش K-NN برای امتیازدهی اعتباری

عنوان انگلیسی
Building contextual classifiers by integrating fuzzy rule based classification technique and k-nn method for credit scoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48567 2007 11 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advanced Engineering Informatics, Volume 21, Issue 3, July 2007, Pages 281–291

ترجمه کلمات کلیدی
طبقه بندی متنی - پایه قوانین فازی - بهبود کیفی - امتیازدهی اعتباری - محدودیت های کسب و کار
کلمات کلیدی انگلیسی
Contextual classifier; SOM; Fuzzy rule base; Fuzzy k-nn; Qualitative improvement; Credit scoring; Business constraints
پیش نمایش مقاله
پیش نمایش مقاله   طبقه بندی کننده متنی ساختمان با یکپارچه سازی روش طبقه بندی مبتنی بر قواعد فازی و روش K-NN برای امتیازدهی اعتباری

چکیده انگلیسی

Credit-risk evaluation is a very challenging and important problem in the domain of financial analysis. Many classification methods have been proposed in the literature to tackle this problem. Statistical and neural network based approaches are among the most popular paradigms. However, most of these methods produce so-called “hard” classifiers, those generate decisions without any accompanying confidence measure. In contrast, “soft” classifiers, such as those designed using fuzzy set theoretic approach; produce a measure of support for the decision (and also alternative decisions) that provides the analyst with greater insight. In this paper, we propose a method of building credit-scoring models using fuzzy rule based classifiers. First, the rule base is learned from the training data using a SOM based method. Then the fuzzy k-nn rule is incorporated with it to design a contextual classifier that integrates the context information from the training set for more robust and qualitatively better classification. Further, a method of seamlessly integrating business constraints into the model is also demonstrated.