دانلود مقاله ISI انگلیسی شماره 48570
ترجمه فارسی عنوان مقاله

روش نمونه گیری مثال در امتیازدهی اعتباری: مطالعه تجربی اندازه نمونه و حفظ تعادل

عنوان انگلیسی
Instance sampling in credit scoring: An empirical study of sample size and balancing
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48570 2012 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : International Journal of Forecasting, Volume 28, Issue 1, January–March 2012, Pages 224–238

ترجمه کلمات کلیدی
امتیازدهی اعتباری - پردازش اولیه داده - حجم نمونه - زیر نمونه - بیش از نمونه گیری - تعادل
کلمات کلیدی انگلیسی
Credit scoring; Data pre-processing; Sample size; Under-sampling; Over-sampling; Balancing
پیش نمایش مقاله
پیش نمایش مقاله  روش نمونه گیری مثال در امتیازدهی اعتباری: مطالعه تجربی اندازه نمونه و حفظ تعادل

چکیده انگلیسی

To date, best practice in sampling credit applicants has been established based largely on expert opinion, which generally recommends that small samples of 1500 instances each of both goods and bads are sufficient, and that the heavily biased datasets observed should be balanced by undersampling the majority class. Consequently, the topics of sample sizes and sample balance have not been subject to either formal study in credit scoring, or empirical evaluations across different data conditions and algorithms of varying efficiency. This paper describes an empirical study of instance sampling in predicting consumer repayment behaviour, evaluating the relative accuracies of logistic regression, discriminant analysis, decision trees and neural networks on two datasets across 20 samples of increasing size and 29 rebalanced sample distributions created by gradually under- and over-sampling the goods and bads respectively. The paper makes a practical contribution to model building on credit scoring datasets, and provides evidence that using samples larger than those recommended in credit scoring practice provides a significant increase in accuracy across algorithms.