دانلود مقاله ISI انگلیسی شماره 48576
ترجمه فارسی عنوان مقاله

بهبود مدیریت موسسات تامین مالی خرد با استفاده از مدل امتیازدهی اعتباری بر اساس تکنیک های یادگیری آماری

عنوان انگلیسی
Improving the management of microfinance institutions by using credit scoring models based on Statistical Learning techniques
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48576 2013 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 17, 1 December 2013, Pages 6910–6917

ترجمه کلمات کلیدی
سیستم های پشتیبانی تصمیم - موسسات تامین مالی خرد - اعتبارسنجی - بهره وری - آموزش آماری - داده کاوی
کلمات کلیدی انگلیسی
Decision support systems; Microfinance institutions; Credit scoring; Efficiency; Statistical Learning; Data mining
پیش نمایش مقاله
پیش نمایش مقاله  بهبود مدیریت موسسات تامین مالی خرد با استفاده از مدل امتیازدهی اعتباری بر اساس تکنیک های یادگیری آماری

چکیده انگلیسی

A wide range of supervised classification algorithms have been successfully applied for credit scoring in non-microfinance environments according to recent literature. However, credit scoring in the microfinance industry is a relatively recent application, and current research is based, to the best of our knowledge, on classical statistical methods. This lack is surprising since the implementation of credit scoring based on supervised classification algorithms should contribute towards the efficiency of microfinance institutions, thereby improving their competitiveness in an increasingly constrained environment. This paper explores an extensive list of Statistical Learning techniques as microfinance credit scoring tools from an empirical viewpoint. A data set of microcredits belonging to a Peruvian Microfinance Institution is considered, and the following models are applied to decide between default and non-default credits: linear and quadratic discriminant analysis, logistic regression, multilayer perceptron, support vector machines, classification trees, and ensemble methods based on bagging and boosting algorithm. The obtained results suggest the use of a multilayer perceptron trained in the R statistical system with a second order algorithm. Moreover, our findings show that, with the implementation of this MLP-based model, the MFIś misclassification costs could be reduced to 13.7% with respect to the application of other classic models.