دانلود مقاله ISI انگلیسی شماره 48579
ترجمه فارسی عنوان مقاله

مدل درخت های تصمیم گیری کیسه های عمودی برای امتیازدهی اعتباری

عنوان انگلیسی
Vertical bagging decision trees model for credit scoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48579 2010 6 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 37, Issue 12, December 2010, Pages 7838–7843

ترجمه کلمات کلیدی
امتیازدهی اعتباری - درخت های تصمیم گیری - کیسه - تقسیم بندی
کلمات کلیدی انگلیسی
Credit scoring; Decision trees; Bagging; Classification
پیش نمایش مقاله
پیش نمایش مقاله  مدل درخت های تصمیم گیری کیسه های عمودی برای امتیازدهی اعتباری

چکیده انگلیسی

In recent years, more and more people, especially young people, begin to use credit card with the changing of consumption concept in China so that the business on credit cards is growing fast. Therefore, it is significative that some effective tools such as credit-scoring models are created to help those decision makers engaged in credit cards. A novel credit-scoring model, called vertical bagging decision trees model (abbreviated to VBDTM), is proposed for the purpose in this paper. The model is a new bagging method that is different from the traditional bagging. The VBDTM model gets an aggregation of classifiers by means of the combination of predictive attributes. In the VBDTM model, all train samples and just parts of attributes take part in learning of every classifier. By contrast, classifiers are trained with the sample subsets in the traditional bagging method and every classifier has the same attributes. The VBDTM has been tested by two credit databases from the UCI Machine Learning Repository, and the analysis results show that the performance of the method proposed by us is outstanding on the prediction accuracy.