دانلود مقاله ISI انگلیسی شماره 48581
ترجمه فارسی عنوان مقاله

دو مدل امتیازدهی اعتباری بر اساس درختان آنسامبل استراتژی دوگانه

عنوان انگلیسی
Two credit scoring models based on dual strategy ensemble trees
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48581 2012 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Knowledge-Based Systems, Volume 26, February 2012, Pages 61–68

ترجمه کلمات کلیدی
امتیازدهی اعتباری - آموزش آنسامبل - کیسه - فضا تصادفی - درخت تصمیم گیری
کلمات کلیدی انگلیسی
Credit scoring; Ensemble learning; Bagging; Random subspace; Decision tree
پیش نمایش مقاله
پیش نمایش مقاله  دو مدل امتیازدهی اعتباری بر اساس درختان آنسامبل استراتژی دوگانه

چکیده انگلیسی

Decision tree (DT) is one of the most popular classification algorithms in data mining and machine learning. However, the performance of DT based credit scoring model is often relatively poorer than other techniques. This is mainly due to two reasons: DT is easily affected by (1) the noise data and (2) the redundant attributes of data under the circumstance of credit scoring. In this study, we propose two dual strategy ensemble trees: RS-Bagging DT and Bagging-RS DT, which are based on two ensemble strategies: bagging and random subspace, to reduce the influences of the noise data and the redundant attributes of data and to get the relatively higher classification accuracy. Two real world credit datasets are selected to demonstrate the effectiveness and feasibility of proposed methods. Experimental results reveal that single DT gets the lowest average accuracy among five single classifiers, i.e., Logistic Regression Analysis (LRA), Linear Discriminant Analysis (LDA), Multi-layer Perceptron (MLP) and Radial Basis Function Network (RBFN). Moreover, RS-Bagging DT and Bagging-RS DT get the better results than five single classifiers and four popular ensemble classifiers, i.e., Bagging DT, Random Subspace DT, Random Forest and Rotation Forest. The results show that RS-Bagging DT and Bagging-RS DT can be used as alternative techniques for credit scoring.