دانلود مقاله ISI انگلیسی شماره 48584
ترجمه فارسی عنوان مقاله

ارزیابی مقایسه ای یادگیری آنسامبل برای امتیازدهی اعتباری

عنوان انگلیسی
A comparative assessment of ensemble learning for credit scoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48584 2011 8 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 38, Issue 1, January 2011, Pages 223–230

ترجمه کلمات کلیدی
امتیازدهی اعتباری - آموزش آنسامبل - کیسه - افزایش - انباشته
کلمات کلیدی انگلیسی
Credit scoring; Ensemble learning; Bagging; Boosting; Stacking
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی مقایسه ای یادگیری آنسامبل برای امتیازدهی اعتباری

چکیده انگلیسی

Both statistical techniques and Artificial Intelligence (AI) techniques have been explored for credit scoring, an important finance activity. Although there are no consistent conclusions on which ones are better, recent studies suggest combining multiple classifiers, i.e., ensemble learning, may have a better performance. In this study, we conduct a comparative assessment of the performance of three popular ensemble methods, i.e., Bagging, Boosting, and Stacking, based on four base learners, i.e., Logistic Regression Analysis (LRA), Decision Tree (DT), Artificial Neural Network (ANN) and Support Vector Machine (SVM). Experimental results reveal that the three ensemble methods can substantially improve individual base learners. In particular, Bagging performs better than Boosting across all credit datasets. Stacking and Bagging DT in our experiments, get the best performance in terms of average accuracy, type I error and type II error.