دانلود مقاله ISI انگلیسی شماره 48587
ترجمه فارسی عنوان مقاله

مدل های آنسامبل ماشین بردار پشتیبانی حداقل مربعات برای امتیازدهی اعتباری

عنوان انگلیسی
Least squares support vector machines ensemble models for credit scoring
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48587 2010 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 37, Issue 1, January 2010, Pages 127–133

ترجمه کلمات کلیدی
امتیازدهی اعتباری - پشتیبانی ماشین بردار - مدل آنسامبل
کلمات کلیدی انگلیسی
Credit scoring; Support vector machines; Ensemble model
پیش نمایش مقاله
پیش نمایش مقاله  مدل های آنسامبل ماشین بردار پشتیبانی حداقل مربعات برای امتیازدهی اعتباری

چکیده انگلیسی

Due to recent financial crisis and regulatory concerns of Basel II, credit risk assessment is becoming one of the most important topics in the field of financial risk management. Quantitative credit scoring models are widely used tools for credit risk assessment in financial institutions. Although single support vector machines (SVM) have been demonstrated with good performance in classification, a single classifier with a fixed group of training samples and parameters setting may have some kind of inductive bias. One effective way to reduce the bias is ensemble model. In this study, several ensemble models based on least squares support vector machines (LSSVM) are brought forward for credit scoring. The models are tested on two real world datasets and the results show that ensemble strategies can help to improve the performance in some degree and are effective for building credit scoring models.