دانلود مقاله ISI انگلیسی شماره 48601
ترجمه فارسی عنوان مقاله

بررسی رفتار طبقه بندی کننده پایه در آنسامبل های امتیازدهی اعتباری

عنوان انگلیسی
Exploring the behaviour of base classifiers in credit scoring ensembles
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48601 2012 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 39, Issue 11, 1 September 2012, Pages 10244–10250

ترجمه کلمات کلیدی
امور مالی - اعتبارسنجی - آنسامبل طبقه بندی
کلمات کلیدی انگلیسی
Finance; Credit scoring; Classifier ensemble
پیش نمایش مقاله
پیش نمایش مقاله  بررسی رفتار طبقه بندی کننده پایه در آنسامبل های امتیازدهی اعتباری

چکیده انگلیسی

Many techniques have been proposed for credit risk assessment, from statistical models to artificial intelligence methods. During the last few years, different approaches to classifier ensembles have successfully been applied to credit scoring problems, demonstrating to be more accurate than single prediction models. However, it is still a question what base classifiers should be employed in each ensemble in order to achieve the highest performance. Accordingly, the present paper evaluates the performance of seven individual prediction techniques when used as members of five different ensemble methods. The ultimate aim of this study is to suggest appropriate classifiers for each ensemble approach in the context of credit scoring. The experimental results and statistical tests show that the C4.5 decision tree constitutes the best solution for most ensemble methods, closely followed by the multilayer perceptron neural network and logistic regression, whereas the nearest neighbour and the naive Bayes classifiers appear to be significantly the worst.