دانلود مقاله ISI انگلیسی شماره 48603
ترجمه فارسی عنوان مقاله

مدل های امتیازدهی اعتباری برای صنعت قرضه های کوچک با استفاده از شبکه های عصبی: شواهدی از پرو

عنوان انگلیسی
Credit scoring models for the microfinance industry using neural networks: Evidence from Peru
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48603 2013 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 40, Issue 1, January 2013, Pages 356–364

ترجمه کلمات کلیدی
موسسات تامین مالی خرد - قوانین طبقه بندی - پرسپترون چند لایه - تجزیه و تحلیل تفکیک خطی - تجزیه و تحلیل تفکیک درجه دوم - رگرسیون لجستیک
کلمات کلیدی انگلیسی
Microfinance institutions; Classification rules; Multilayer perceptron; Linear discriminant analysis; Quadratic discriminant analysis; Logistic regression
پیش نمایش مقاله
پیش نمایش مقاله  مدل های امتیازدهی اعتباری برای صنعت قرضه های کوچک با استفاده از شبکه های عصبی: شواهدی از پرو

چکیده انگلیسی

Credit scoring systems are currently in common use by numerous financial institutions worldwide. However, credit scoring with the microfinance industry is a relatively recent application, and no model which employs a non-parametric statistical technique has yet, to the best of our knowledge, been published. This lack is surprising since the implementation of credit scoring should contribute towards the efficiency of microfinance institutions, thereby improving their competitiveness in an increasingly constrained environment. This paper builds several non-parametric credit scoring models based on the multilayer perceptron approach (MLP) and benchmarks their performance against other models which employ the traditional linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and logistic regression (LR) techniques. Based on a sample of almost 5500 borrowers from a Peruvian microfinance institution, the results reveal that neural network models outperform the other three classic techniques both in terms of area under the receiver-operating characteristic curve (AUC) and as misclassification costs.