دانلود مقاله ISI انگلیسی شماره 48608
ترجمه فارسی عنوان مقاله

مدلهای ارزیابی امتیازدهی اعتباری مصرف کننده با اطلاعات محدود

عنوان انگلیسی
Consumer credit scoring models with limited data
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48608 2009 9 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 36, Issue 3, Part 1, April 2009, Pages 4736–4744

ترجمه کلمات کلیدی
امتیازدهی اعتباری مصرف کننده - شبکه های عصبی - الگوریتم ژنتیک - تحلیل مؤلفه های اصلی - انتخاب متغیر
کلمات کلیدی انگلیسی
Consumer credit scoring; Neural networks; Genetic algorithm; Principle component analysis; Variable selection
پیش نمایش مقاله
پیش نمایش مقاله  مدلهای ارزیابی امتیازدهی اعتباری مصرف کننده با اطلاعات محدود

چکیده انگلیسی

In this paper we design the neural network consumer credit scoring models for financial institutions where data usually used in previous research are not available. We use extensive primarily accounting data set on transactions and account balances of clients available in each financial institution. As many of these numerous variables are correlated and have very questionable information content, we considered the issue of variable selection and the selection of training and testing sub-sets crucial in developing efficient scoring models. We used a genetic algorithm for variable selection. In dividing performing and nonperforming loans into training and testing sub-sets we replicated the distribution on Kohonen artificial neural network, however, when evaluating the efficiency of models, we used k-fold cross-validation. We developed consumer credit scoring models with error back-propagation artificial neural networks and checked their efficiency against models developed with logistic regression. Considering the dataset of questionable information content, the results were surprisingly good and one of the error back-propagation artificial neural network models has shown the best results. We showed that our variable selection method is well suited for the addressed problem.