دانلود مقاله ISI انگلیسی شماره 48615
ترجمه فارسی عنوان مقاله

برنامه نویسی ژنتیک برای امتیازدهی اعتباری: مورد بانک های بخش دولتی مصر

عنوان انگلیسی
Genetic programming for credit scoring: The case of Egyptian public sector banks
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48615 2009 16 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 36, Issue 9, November 2009, Pages 11402–11417

ترجمه کلمات کلیدی
برنامه نویسی ژنتیک - اعتبارسنجی - وزن شواهد - بانک های بخش دولتی مصر
کلمات کلیدی انگلیسی
Genetic programming; Credit scoring; Weight of evidence; Egyptian public sector banks
پیش نمایش مقاله
پیش نمایش مقاله  برنامه نویسی ژنتیک برای امتیازدهی اعتباری: مورد بانک های بخش دولتی مصر

چکیده انگلیسی

Credit scoring has been widely investigated in the area of finance, in general, and banking sectors, in particular. Recently, genetic programming (GP) has attracted attention in both academic and empirical fields, especially for credit problems. The primary aim of this paper is to investigate the ability of GP, which was proposed as an extension of genetic algorithms and was inspired by the Darwinian evolution theory, in the analysis of credit scoring models in Egyptian public sector banks. The secondary aim is to compare GP with probit analysis (PA), a successful alternative to logistic regression, and weight of evidence (WOE) measure, the later a neglected technique in published research. Two evaluation criteria are used in this paper, namely, average correct classification (ACC) rate criterion and estimated misclassification cost (EMC) criterion with different misclassification cost (MC) ratios, in order to evaluate the capabilities of the credit scoring models. Results so far revealed that GP has the highest ACC rate and the lowest EMC. However, surprisingly, there is a clear rule for the WOE measure under EMC with higher MC ratios. In addition, an analysis of the dataset using Kohonen maps is undertaken to provide additional visual insights into cluster groupings.