دانلود مقاله ISI انگلیسی شماره 48628
ترجمه فارسی عنوان مقاله

ساخت مدل های امتیازدهی اعتباری با استفاده از برنامه نویسی ژنتیک

عنوان انگلیسی
Building credit scoring models using genetic programming
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48628 2005 7 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 29, Issue 1, July 2005, Pages 41–47

ترجمه کلمات کلیدی
امتیازدهی اعتباری - شبکه عصبی مصنوعی (ANN) - درخت های تصمیم گیری - برنامه نویسی ژنتیک (GP) - مجموعه های سخت
کلمات کلیدی انگلیسی
Credit scoring; Artificial neural network (ANN); Decision trees; Genetic programming (GP); Rough sets
پیش نمایش مقاله
پیش نمایش مقاله  ساخت مدل های امتیازدهی اعتباری با استفاده از برنامه نویسی ژنتیک

چکیده انگلیسی

Credit scoring models have been widely studied in the areas of statistics, machine learning, and artificial intelligence (AI). Many novel approaches such as artificial neural networks (ANNs), rough sets, or decision trees have been proposed to increase the accuracy of credit scoring models. Since an improvement in accuracy of a fraction of a percent might translate into significant savings, a more sophisticated model should be proposed to significantly improving the accuracy of the credit scoring mode. In this paper, genetic programming (GP) is used to build credit scoring models. Two numerical examples will be employed here to compare the error rate to other credit scoring models including the ANN, decision trees, rough sets, and logistic regression. On the basis of the results, we can conclude that GP can provide better performance than other models.