دانلود مقاله ISI انگلیسی شماره 48635
ترجمه فارسی عنوان مقاله

شبکه های عصبی در مقابل روش های معمول در امتیازدهی اعتباری در بانک های مصر

عنوان انگلیسی
Neural nets versus conventional techniques in credit scoring in Egyptian banking
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
48635 2008 18 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Expert Systems with Applications, Volume 35, Issue 3, October 2008, Pages 1275–1292

ترجمه کلمات کلیدی
شبکه های عصبی - روش های معمول - بانکداری - اعتبارسنجی
کلمات کلیدی انگلیسی
G21; G32Neural nets; Conventional techniques; Banking; Credit scoring
پیش نمایش مقاله
پیش نمایش مقاله  شبکه های عصبی در مقابل روش های معمول در امتیازدهی اعتباری در بانک های مصر

چکیده انگلیسی

Neural nets have become one of the most important tools using in credit scoring. Credit scoring is regarded as a core appraised tool of commercial banks during the last few decades. The purpose of this paper is to investigate the ability of neural nets, such as probabilistic neural nets and multi-layer feed-forward nets, and conventional techniques such as, discriminant analysis, probit analysis and logistic regression, in evaluating credit risk in Egyptian banks applying credit scoring models. The credit scoring task is performed on one bank’s personal loans’ data-set. The results so far revealed that the neural nets-models gave a better average correct classification rate than the other techniques. A one-way analysis of variance and other tests have been applied, demonstrating that there are some significant differences amongst the means of the correct classification rates, pertaining to different techniques.