دانلود مقاله ISI انگلیسی شماره 50059
ترجمه فارسی عنوان مقاله

ارزیابی ریسک عملیاتی صنایع شیمیایی با بهره برداری از پایگاه داده های تصادفی

عنوان انگلیسی
Operational risk assessment of chemical industries by exploiting accident databases
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
50059 2007 15 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Journal of Loss Prevention in the Process Industries, Volume 20, Issue 2, March 2007, Pages 113–127

ترجمه کلمات کلیدی
خطر - مدل سازی فرکانس - مدل سازی نتیجه - حوادث غیر طبیعی -
کلمات کلیدی انگلیسی
Risk; Frequency modeling; Consequence modeling; Abnormal events; Chemical plantsCompanies A, B, C, D, E, F, G—A, B, C, D, E, F, G; Basic indicator approach, BIA; Capital at risk, CaR; Center for Chemical Process Safety (AIChE), CCPS; Equipment failure, EF; Environmental Protection Agency, EPA; Extreme value theory, EVT; Fast-Fourier transform, FFT; Heat transfer units, HT; Identically and independently distributed, iid; Inverse fast-Fourier transform, IFFT; Internal measurement approach, IMA; Loss distribution approach, LDA; Markov-chain Monte Carlo, MCMC; Major Accident Reporting System, MARS; National Response Center, NRC; Others, O; Operator error, OE; Occupational Safety and Health Administration, OSHA; Process Safety Incident Database, PSID; Process safety management, PSM; Process units, PU; Process vessels, PV; Quantile-quantile, Q-Q; Risk Management Plan, RMP; Standardized approach, SA; Storage vessel, SV; Transfer line, TL
پیش نمایش مقاله
پیش نمایش مقاله  ارزیابی ریسک عملیاتی صنایع شیمیایی با بهره برداری از پایگاه داده های تصادفی

چکیده انگلیسی

More specifically, this paper presents dynamic analyses of incidents in the NRC database. The NRC database is exploited to model the rate of occurrence of incidents in various chemical and petrochemical companies using Bayesian theory. Probability density distributions are formulated for their causes (e.g., equipment failures, operator errors, etc.), and associated equipment items utilized within a particular industry. Bayesian techniques provide posterior estimates of the cause and equipment-failure probabilities. Cross-validation techniques are used for checking the modeling, validation, and prediction accuracies. Differences in the plant- and chemical-specific predictions with the overall predictions are demonstrated. Furthermore, extreme value theory is used for consequence modeling of rare events by formulating distributions for events over a threshold value. Finally, the fast-Fourier transform is used to estimate the capital at risk within an industry utilizing the frequency and loss-severity distributions.