دانلود مقاله ISI انگلیسی شماره 114858
ترجمه فارسی عنوان مقاله

یک روش مبتنی بر هسته طیفی فضایی برای طبقه بندی تصویری هیپرتفرال

عنوان انگلیسی
A spectral-spatial kernel-based method for hyperspectral imagery classification
کد مقاله سال انتشار تعداد صفحات مقاله انگلیسی
114858 2017 35 صفحه PDF
منبع

Publisher : Elsevier - Science Direct (الزویر - ساینس دایرکت)

Journal : Advances in Space Research, Volume 59, Issue 4, 15 February 2017, Pages 954-967

پیش نمایش مقاله
پیش نمایش مقاله  یک روش مبتنی بر هسته طیفی فضایی برای طبقه بندی تصویری هیپرتفرال

چکیده انگلیسی

Spectral-based classification methods have gained increasing attention in hyperspectral imagery classification. Nevertheless, the spectral cannot fully represent the inherent spatial distribution of the imagery. In this paper, a spectral-spatial kernel-based method for hyperspectral imagery classification is proposed. Firstly, the spatial feature was extracted by using area median filtering (AMF). Secondly, the result of the AMF was used to construct spatial feature patch according to different window sizes. Finally, using the kernel technique, the spectral feature and the spatial feature were jointly used for the classification through a support vector machine (SVM) formulation. Therefore, for hyperspectral imagery classification, the proposed method was called spectral-spatial kernel-based support vector machine (SSF-SVM). To evaluate the proposed method, experiments are performed on three hyperspectral images. The experimental results show that an improvement is possible with the proposed technique in most of the real world classification problems.